120 research outputs found

    P300-Based BCI Mouse With Genetically-Optimized Analogue Control

    Get PDF
    In this paper we propose a brain-computer interface (BCI) mouse based on P300 waves in electroencephalogram (EEG) signals. The system is analogue in that at no point a binary decision is made as to whether or not a P300 was actually produced in response to the stimuli. Instead, the 2-D motion of the pointer on the screen, using a novel BCI paradigm, is controlled by directly combining the amplitudes of the output produced by a filter in the presence of different stimuli. This filter and the features to be combined within it are optimised by an evolutionary algorithm. © 2006 IEEE

    Clyde: A deep reinforcement learning DOOM playing agent

    Get PDF
    In this paper we present the use of deep reinforcement learn-ing techniques in the context of playing partially observablemulti-agent 3D games. These techniques have traditionallybeen applied to fully observable 2D environments, or navigation tasks in 3D environments. We show the performanceof Clyde in comparison to other competitors within the con-text of the ViZDOOM competition that saw 9 bots competeagainst each other in DOOM death matches. Clyde managedto achieve 3rd place in the ViZDOOM competition held at theIEEE Conference on Computational Intelligence and Games2016. Clyde performed very well considering its relative sim-plicity and the fact that we deliberately avoided a high levelof customisation to keep the algorithm generic

    Generalization Performance of the Deep Learning Models in Neurodegenerative Disease Classification.

    Get PDF
    Over the past decade, machine learning gained considerable attention from the scientific community and has progressed rapidly as a result. Given its ability to detect subtle and complicated patterns, deep learning (DL) has been utilized widely in neuroimaging studies for medical data analysis and automated diagnostics with varying degrees of success. In this paper, we question the remarkable accuracies of the best performing models by assessing generalization performance of the stateof-the-art convolutional neural network (CNN) models on the classification of two most common neurodegenerative diseases, namely Alzheimer’s Disease (AD) and Parkinson’s Disease (PD) using MRI. We demonstrate the impact of the data division strategy on the model performances by comparing the results derived from two different split approaches. We first evaluated the performance of the CNN models by dividing the dataset at the subject level in which all of the MRI slices of a patient are put into either training or test set. We then observed that pooling together all slices prior to applying cross-validation, as erroneously done in a number of previous studies, leads to inflated accuracies by as much as 26% for the classification of the diseases

    cvxEDA: a Convex Optimization Approach to Electrodermal Activity Processing

    Get PDF
    This paper reports on a novel algorithm for the analysis of electrodermal activity (EDA) using methods of convex optimization. EDA can be considered one of the most common observation channels of sympathetic nervous system activity, and manifests itself as a change in electrical properties of the skin, such as skin conductance (SC). The proposed model describes SC as the sum of three terms: the phasic component, the tonic component, and an additive white Gaussian noise term incorporating model prediction errors as well as measurement errors and artifacts. This model is physiologically inspired and fully explains EDA through a rigorous methodology based on Bayesian statistics, mathematical convex optimization and sparsity. The algorithm was evaluated in three different experimental sessions to test its robustness to noise, its ability to separate and identify stimulus inputs, and its capability of properly describing the activity of the autonomic nervous system in response to strong affective stimulation. Results are very encouraging, showing good performance of the proposed method and suggesting promising future applicability, e.g. in the field of affective computing

    Deep Learning in Target Space

    Get PDF
    Deep learning uses neural networks which are parameterised by their weights. The neural networks are usually trained by tuning the weights to directly minimise a given loss function. In this paper we propose to re-parameterise the weights into targets for the firing strengths of the individual nodes in the network. Given a set of targets, it is possible to calculate the weights which make the firing strengths best meet those targets. It is argued that using targets for training addresses the problem of exploding gradients, by a process which we call cascade untangling, and makes the loss-function surface smoother to traverse, and so leads to easier, faster training, and also potentially better generalisation, of the neural network. It also allows for easier learning of deeper and recurrent network structures. The necessary conversion of targets to weights comes at an extra computational expense, which is in many cases manageable. Learning in target space can be combined with existing neural-network optimisers, for extra gain. Experimental results show the speed of using target space, and examples of improved generalisation, for fully-connected networks and convolutional networks, and the ability to recall and process long time sequences and perform natural-language processing with recurrent networks

    Self-reported well-being score modelling and prediction: Proof-of-concept of an approach based on linear dynamic systems

    Get PDF
    Assessment and recognition of perceived well-being has wide applications in the development of assistive healthcare systems for people with physical and mental disorders. In practical data collection, these systems need to be less intrusive, and respect users' autonomy and willingness as much as possible. As a result, self-reported data are not necessarily available at all times. Conventional classifiers, which usually require feature vectors of a prefixed dimension, are not well suited for this problem. To address the issue of non-uniformly sampled measurements, in this study we propose a method for the modelling and prediction of self-reported well-being scores based on a linear dynamic system. Within the model, we formulate different features as observations, making predictions even in the presence of inconsistent and irregular data. We evaluate the proposed method with synthetic data, as well as real data from two patients diagnosed with cancer. In the latter, self-reported scores from three well-being-related scales were collected over a period of approximately 60 days. Prompted each day, the patients had the choice whether to respond or not. Results show that the proposed model is able to track and predict the patients' perceived well-being dynamics despite the irregularly sampled data

    Bayesian Transfer Learning for the Prediction of Self-reported Well-being Scores

    Get PDF
    Predicting the severity and onset of depressive symptoms is of great importance. User-specific models have better performance than a general model but require significant amounts of training data from each individual, which is often impractical to obtain. Even when this is possible, there is a significant lag between the beginning of the data-collection phase and when the system is completely trained and thus able to start making useful predictions. In this study, we propose a transfer learning Bayesian modelling method based on a Markov Chain Monte Carlo (MCMC) sampler and Bayesian model averaging for dealing with the challenge of building user-specific predictive models able to make predictions of self-reported well-being scores with limited sparse training data. The evaluation of our method using real-world data collected within the NEVERMIND project showed a better predictive performance for the transfer learning model compared to conventional learning with no transfer
    corecore